skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vidrier_Villalba, P V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Measurements ofCPobservables and the CKM angleγare performed inB±→DK*(892)±decays, whereDrepresents a superposition ofD0and$$ {\overline{D}}^0 $$ D ¯ 0 states, using the LHCb dataset collected during Run 1 (2011–2012) and Run 2 (2015–2018). A study of this channel is presented with theDmeson reconstructed in two-body final statesK±π,K+Kandπ+π; four-body final statesK±ππ±πandπ+ππ+π; and three-body final states$$ {K}_{\textrm{S}}^0{\pi}^{+}{\pi}^{-} $$ K S 0 π + π and$$ {K}_{\textrm{S}}^0{K}^{+}{K}^{-} $$ K S 0 K + K . This analysis includes the first observation of the suppressedB±→[π±K]DKandB±→[π±Kπ±π]DKdecays. The combined result givesγ= (63±13)°. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract A search for the very rare$$B^{*0}\rightarrow \mu ^+\mu ^-$$ B 0 μ + μ - and$$B_{s}^{*0}\rightarrow \mu ^+\mu ^-$$ B s 0 μ + μ - decays is conducted by analysing the$$B_c^+\rightarrow \pi ^+\mu ^+\mu ^-$$ B c + π + μ + μ - process. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9$$\text {\,fb}^{-1}$$ \,fb - 1 . The signal signatures correspond to simultaneous peaks in the$$\mu ^+\mu ^-$$ μ + μ - and$$\pi ^+\mu ^+\mu ^-$$ π + μ + μ - invariant masses. No evidence for an excess of events over background is observed for either signal decay mode. Upper limits at the$$90\%$$ 90 % confidence level are set on the branching fractions relative to that for$$B_c^+\rightarrow J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+$$ B c + J / ψ π + decays,$$\begin{aligned} \mathcal{R}_{B^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 3.8\times 10^{-5}\ \text { and }\\ \mathcal{R}_{B_{s}^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 5.0\times 10^{-5}. \end{aligned}$$ R B 0 ( μ + μ - ) π + / J / ψ π + < 3.8 × 10 - 5 and R B s 0 ( μ + μ - ) π + / J / ψ π + < 5.0 × 10 - 5 .  
    more » « less
  3. A<sc>bstract</sc> Usingppcollision data at$$ \sqrt{s} $$ s = 13 TeV, recorded by the LHCb experiment between 2016 and 2018 and corresponding to an integrated luminosity of 5.4 fb−1, the forward-backward asymmetry in thepp→Z/γ*→μ+μprocess is measured. The measurement is carried out in ten intervals of the difference between the muon pseudorapidities, within a fiducial region covering dimuon masses between 66 and 116 GeV, muon pseudorapidities between 2.0 and 4.5 and muon transverse momenta above 20 GeV. These forward-backward asymmetries are compared with predictions, at next-to-leading order in the strong and electroweak couplings. The measured effective leptonic weak mixing angle is$$ {\sin}^2{\theta}_{\textrm{eff}}^{\ell }=0.23147\pm 0.00044\pm 0.00005\pm 0.00023, $$ sin 2 θ eff = 0.23147 ± 0.00044 ± 0.00005 ± 0.00023 , where the first uncertainty is statistical, the second arises from systematic uncertainties associated with the asymmetry measurement, and the third arises from uncertainties in the fit model used to extract$$ {\sin}^2{\theta}_{\textrm{eff}}^{\ell } $$ sin 2 θ eff from the asymmetry measurement. This result is based on an arithmetic average of results using the CT18, MSHT20, and NNPDF31 parameterisations of the proton internal structure, and is consistent with previous measurements and with predictions from the global electroweak fit. 
    more » « less
  4. A search for violation of the charge-parity ( C P ) symmetry in the D + K K + π + decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4 fb 1 , collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D + and D phase-space distributions, with instrumental asymmetries subtracted using the D s + K K + π + decay as a control channel. The p value for the hypothesis of C P conservation is 8.1%. The C P asymmetry observables A C P | S ϕ π + = ( 0.95 ± 0.4 3 stat ± 0.2 6 syst ) × 10 3 and A C P | S K ¯ * 0 K + = ( 0.26 ± 0.5 6 stat ± 0.1 8 syst ) × 10 3 are also measured. These results show no evidence of C P violation and represent the most sensitive search performed through the phase space of a multibody decay. © 2024 CERN, for the LHCb Collaboration2024CERN 
    more » « less
  5. A<sc>bstract</sc> The decays of the χb1(1P), χb2(1P), χb1(2P) and χb2(2P) mesons into the Υ(1S)μ+μfinal state are observed with a high significance using proton-proton collision data collected with the LHCb detector and corresponding to an integrated luminosity of 9 fb−1. The newly observed decays together with the Υ(2S) → Υ(1S)π+πand Υ(3S) → Υ(2S)π+πdecay modes are used for precision measurements of the mass and mass splittings for the hidden-beauty states. 
    more » « less